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Abstract The study proposes a genetic algorithm-based integrated approach where
the selection of suitable machine and sequencing of operations in machines are
performed simultaneously in a flexible job shop-based environment. For this, chro-
mosome representation chosen is simple to code and decode and always results in a
feasible solution on the application of genetic operators. In true sense to real produc-
tion problems, multiple objectives are considered which will reduce the total produc-
tion time of the entire batch with efficient machine utilization. The proposed solution
is evaluated on test data, and it was shown that the algorithm is giving equivalent and
in some cases better results in comparison with existing methodologies.
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1 Introduction

Flexible job shop scheduling (FJS) problem arises in a job shop-based production
environment where multiple machines are available for performing a particular oper-
ation. This additional flexibility demands two types of decisions to be made, namely
selection of appropriate machine from the available machines for performing an
operation on a job and then finding an appropriate sequence of operations of same
or different jobs to be performed in a particular machine to achieve some desire
objectives. The first type of decision comes under the routing subproblems, and the
second type of decision falls under the scheduling subproblems of production plan-
ning domain. In line with its predecessor job shop scheduling problem (JSP), which
only concerns the scheduling of operations, it is combinatorial NP-hard problem, but
the presence of routing makes it more difficult to solve in comparison with JSP.

Several alternative approaches have been suggested in the literature to tackle FJS
problems (FJSP) which can be characterized as heuristic and meta-heuristic solu-
tion methodologies. Heuristic approaches may guarantee the optimal solution but
that may not be true if large size problem instances are considered. Whereas high-
level strategies known as meta-heuristics have produced optimal solutions within a
reasonable computational time for a different size of problem instances [1]. These
meta-heuristics use either a hierarchical or a combination approach to solve FJSP. The
hierarchical approach decomposes the FJSP into routing and sequencing subprob-
lems. Routing can be done using simple dispatching rules or a combination of them,
and then some other higher-order heuristic can be used to solve the sequencing
subproblem. In a combination approach, both types of subproblems are combined
and solved simultaneously [2]. Although integration is difficult to implement, the
quality of solutions is better than the hierarchical approach. In this direction, GA
[2], PSO [3, 4], and ACO [5] are effective meta-heuristics which can exploit a lot
of domain knowledge and implemented to solve the FJSP. GA is the most popular
meta-heuristics technique as it explores solution space more diversely by using the
population of solutions and provides resistance to premature convergence on local
minima. Recently, more and more papers are concentrating on GA [6] or hybrid GA
[7] with different population representation and generation strategies.

Most of these approaches concentrated on determining an optimum schedule
which satisfies a single objective [4, 7]. The real-world production scenario demands
production of a complete batch in minimum time and proper utilization of all the
available machines so that no single machine is under-utilized or over-utilized.
The presence of these multiple objectives put additional difficulty in FJSP solution
methodology [8–10].

In this regard, the present study proposes the use of simple GA to solve multi-
objectiveFJSP.Asper the combinatorial nature of FJSP, solution coding and encoding
are incorporated using problem-specific knowledge to obtain feasible solutions. In
the true sense of many-objective behaviour of the problem, no artificial fix up is used.
Instead, the Pareto-optimal approach [9] is used. In this approach, superiority of one
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solution over others is not established for all the objectives considered simultane-
ously. Through this algorithm will try to find out a diverse set of solutions close to
Pareto front. The main aim of developed GA is to obtain a diverse set of solutions as
close as possible to the actual Pareto-optimal front.

2 Problem Formulation

Multi-objective FJSP addressed in this study consider n jobs (indexed by i) and
M machines (indexed by k). Each job has a total of Qi operations, and operation
sequence is given by Oij for j = 1, 2, …, Qi. Machines for each Oij are represented
byM ijk. If Mi jk ⊂ M , it is a case of partial flexibility, and ifMijk =M, it is a case of
full flexibility. Processing time ofMijk is predefined and given by pijk . The goal is to
determine schedule which results in the minimization of makespan (F1); maximal
workload (F2), and the total workload of the machines (F3).

It is assumed that all machines and jobs are available and ready to start at time t
= 0. Jobs are independent of each other, and machines never breakdown and process
single operation at a time with a non-preemption condition. Precedence constraint
between the operations of the same job is known and maintained. Each job could
visit the machine more than once. The setup time and job transportation time are
included in the corresponding processing time.

3 Solution Procedure

3.1 Coding and Decoding

In FJSP, potential solutions known as individuals or chromosome consist of two genes
representing scheduling and routing subproblems, respectively. Hence, chromosome
representation consists of two parts, namely operation sequence (OP) and machine
assignment (MS), as shown in Fig. 1. In OP, integer i indicates job number and its jth
repetition indicates Oij operation. In MS, machines are indicated by integer values
and arranged in order of jobs. That is first we arrange the machines for first job
operations, then for second job operations and so on.

Job number 1 3 1 1 2 2 2 3 1 2 3
Operation number 1 1 2 3 1 2 3 2
Chromosome      1 3 1 1 2 2 2 3 1 2 3 2 2 3 2 1

OP MS

Fig. 1 Structure of proposed chromosome
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To reduce the large feasible search space resulting chromosome is mapped to
the corresponding phenotype using an active schedule. In an active schedule, an
operation is scheduled at the earliest available time in a machine.

3.2 Non-domination Sorting

In this step, the population is sorted in ranks according to an ascending level of
non-domination [10]. The non-dominating solutions from the entire population are
assigned rank 1, followed by assigning rank 2 to those solutions which are only
dominated by rank 1 solutions and so on. For determining the diversity among indi-
viduals of the same front crowding distance is calculated. It is a Euclidian distance
between the members of the same rank calculated using their function value in them
dimensional hyperspace. The crowding distance of members at the extreme is taken
equal to infinity.

3.3 Initial Population

The efficiencyof the present approach is increasedby selecting suitable chromosomes
located at a proper region in search space so that algorithm reaches the Pareto front in
the least possible time and without endanger of trapping in local optima. To achieve
this, 50% of the initial population is generated randomly and the remaining 50%
population is generated using a problem-specific approach. For random population
generation, alleles of OP gene are generated randomly with the restriction that each i
appearQi times. ForMS sub-string, each i in OP is decoded to corresponding job and
operation, then for ith job jth operation set of available machines M ijk is identified
and one machine is assigned randomly. The second part of the initial population is
generated using a problem-specific heuristic. For this, OP is generated randomly as
in random population generation, but for elements of MS, the machine which has the
minimum processing time for performing selected operation from OP is selected.

3.4 Selection

Selection of individual chromosomes for generating next-generation children is an
important criterion to balance exploitation and exploration capability of an algorithm.
For this tournament-selection procedure is adopted. In this method, two distinct indi-
vidual solutions are selected randomly and compare. The comparison is done on the
bases of rank, and the solution with the least rank is selected. If ranks are same, then
individual with maximum crowding distance is selected. Between individuals of the
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Jobs {2, 3}

Parent-1 1 2 1 3 2 1 3 2 Parent-1 1 1 2 3 2 1 3 2
↓ ↓ ↓ ↓ ↓

Child-1 1 2 1 3 2 1 3 2 Child-2 1 3 2 3 1 2 1 2
↑ ↑ ↑ ↑ ↑

Parent-2 2 1 3 2 1 2 3 1 Parent-2 1 3 2 3 1 2 1 2

Fig. 2 POX crossover for OS part

Fig. 3 MPX crossover for
MS sub-string

Child-1 1 3 1 2 3 1 1 2
↑ ↑ ↑ ↑ ↑

Parent-1 1 2 1 2 1 1 3 2
Binary vector 0 1 0 0 1 0 1 0

Parent-2 2 3 2 1 3 3 1 1
↓ ↓ ↓ ↓ ↓

Child-2 2 2 2 1 1 3 3 1

same rank, the one with maximum crowding distance is selected else random selec-
tion is done. The selected individual is added to the mating pool for the generation
of next-generation individuals.

3.5 Crossover

Pair of distinct individuals are selected randomly from the mating pool for crossover
operation. For crossover of OP, sub-string of chromosome precedence preserving
order-based crossover (POX) is used, and for MS sub-string multi-point preservative
(MPX) crossover is used. In POX, as shown in Fig. 2, two jobs are selected randomly
from a set of available jobs and where it occurs in parent-1; at the same position, it is
added in child-1 and deleted from parent-2. Remaining entries in parent-2 are added
in child-1 empty positions in a sequence as in a parent-2. Then roles of two parents
are reversed, and child-2 is formed as explained for child-1. In MPX crossover, as
shown in Fig. 3, a binary vector of length equals to MS length is generated with
the element as 0 or 1. At a particular position of this vector if 0 is present then for
child-1, allele value at that position in parent-1 is added and for child-2 allele value
at that position of parent-2 is added; otherwise, parent-1 and parent-2 are reversed.

3.6 Mutation

The generated children will replace their parents in population, and then the entire
population is subjected tomutation. The individual formutation is selected randomly.
For an OP part of selected individual two positions are selected at random and
sub-string is inverted between these two positions. For MS sub-string of the same
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selected individual, any job is selected randomly and the machines associated with
each operation of the respective job are replaced randomly from the set of available
machines.

3.7 Elitism

Better solutions of the previous generation known as elites of the population are
merged with the solutions of the current generation to find the elites of the present
generation. Non-domination sorting is performed on this merged population, and
solutions having rank one are preserved as an elite of present generation. Out of
these generated elites, only those which are not present in the current generation are
added in the population and worst solutions are removed to keep population size
constant. Complete steps followed in this algorithm are represented in Fig. 4.

4 Results

To illustrate the efficiency and effectiveness of the proposed GA for optimization of
multi-objective FJSP, five Kacem instances, namely 4 × 5, 8 × 8, 10 × 7, 10 × 10
and 15 × 10, are used. An algorithm is coded in MATLAB and run in Intel™ core7
computer having 8 GB RAM. Algorithm parameters are given in Table 1.

For comparison purpose, results given in [1, 3, 5, 11] are combined and non-
dominating sorting is performed to find out the optimal solutions. Results from the
proposed methodology are compared with those from the literature and are shown
in Table 2. From the obtained result, it is seen that for 4 × 5, 8 × 8 and 10 × 10
problem our algorithm gives the same result as discovered by other researchers. But
for the case of 10 × 7 and 15 × 10 problems, proposed algorithm can locate better
Pareto front as shown in Fig. 5.

5 Conclusions

In this study, a simple genetic algorithm is proposed to solve the multi-objective
flexible job shop scheduling problems. Themain highlight of thework and associated
advantages are as follows.

• Solutions known as chromosomes are represented using an integrated approach.
• In this, single chromosome consists of two parts known as operation sequence

and machine sequence. Operation sequence represents the routing subproblem,
and machine sequence represents the scheduling subproblem of FJSP.
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Fig. 4 Flowchart of multi-objective genetic algorithm for FJSP (it = iteration number)

Table 1 Algorithm parameters

Parameters Value

Generations 200

Total population 10 × length of chromosome

Percentage of population generated randomly 10%

Crossover probability 90%

Mutation probability 1%
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Table 2 Comparison of results of proposed algorithm with those from literature

Problem Length of
chromosome

Pareto front from literature Obtained Pareto front

F1 F2 F3 F1 F2 F3

4 × 5 24 11 9 34 11 9 34

11 10 32 11 10 32

12 8 32 12 8 32

13 7 33 13 7 33

8 × 8 54 14 12 77 14 12 77

15 12 75 15 12 75

16 11 77 16 11 77

16 13 73 16 13 73

10 × 7 58 11 10 62 11 10 62

12 12 60 11 11 60

11 11 61 12 10 61

12 11 59

12 12 58

10 × 10 60 7 5 43 7 5 43

7 6 42 7 6 42

8 5 42 8 5 42

8 7 41 8 7 41

15 × 10 112 11 10 93 11 10 93

11 11 91 11 11 91

13 10 90

• Efficient chromosome representation adopted in this work simplifies the genera-
tion of active schedule and requires no repair mechanism during genetic alteration
and hence always results in a feasible schedule.

• Chromosome coding and decoding mechanism adopted is suitable for both full
and partial flexible problems.

• The performance of the approach is evaluated with the results obtained from other
authors’ algorithms, and it was shown that the algorithm is giving equivalent and
in some cases better results.

• In future, work will be extended to incorporate the uncertainty in scheduling like
machine breakdown or fuzziness in the planning horizon.


